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Abstract
How a stimulus or a task alters the spontaneous dynamics of the brain remains a fundamen-

tal open question in neuroscience. One of the most robust hallmarks of task/stimulus-driven

brain dynamics is the decrease of variability with respect to the spontaneous level, an effect

seen across multiple experimental conditions and in brain signals observed at different spa-

tiotemporal scales. Recently, it was observed that the trial-to-trial variability and temporal

variance of functional magnetic resonance imaging (fMRI) signals decrease in the task-

driven activity. Here we examined the dynamics of a large-scale model of the human cortex

to provide a mechanistic understanding of these observations. The model allows computing

the statistics of synaptic activity in the spontaneous condition and in putative tasks deter-

mined by external inputs to a given subset of brain regions. We demonstrated that external

inputs decrease the variance, increase the covariances, and decrease the autocovariance

of synaptic activity as a consequence of single node and large-scale network dynamics.

Altogether, these changes in network statistics imply a reduction of entropy, meaning that

the spontaneous synaptic activity outlines a larger multidimensional activity space than

does the task-driven activity. We tested this model’s prediction on fMRI signals from healthy

humans acquired during rest and task conditions and found a significant decrease of

entropy in the stimulus-driven activity. Altogether, our study proposes a mechanism for

increasing the information capacity of brain networks by enlarging the volume of possible

activity configurations at rest and reliably settling into a confined stimulus-driven state to

allow better transmission of stimulus-related information.
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Author Summary

Task- or stimulus-related changes of brain dynamics have been the subject of intense inves-
tigation during the last years. One of the most robust hallmarks of task/stimulus-driven
brain dynamics, as measured using diverse recording techniques, is the decrease of variabil-
ity with respect to the spontaneous level. This has led several researchers to focus on the sec-
ond-order statistics of evoked activity and to study their functional consequences for
information processing. In particular, it was observed that the trial-to-trial variability
(related to variable responses to an identical stimulus from one presentation to the next)
and the temporal variance of functional magnetic resonance imaging (fMRI) signals
decrease in the task-driven activity. Here, we built a computational model of the whole
brain to understand how local and large-scale brain dynamics contribute to these effects.
The model allowed us to derive equations for the network statistics of both spontaneous
and evoked activity. We observed that, as a consequence of single node and network dynam-
ics, stimulus input impacts network statistics in such a way that the entropy of the stimulus-
driven activity is lower than that during spontaneous activity. We confirmed this model pre-
diction using empirical fMRI data and we further discuss its functional implications.

Introduction
How spontaneous brain dynamics are altered under stimulation or task conditions remains an
important open question in neuroscience. Empirically, one of the most robust hallmarks of
task-driven brain activity is the decrease of variability following an external stimulus input, a
phenomenon observed across a variety of species, cortical areas, tasks, stimulus and attentional
conditions, and using brain signals observed across multiple spatiotemporal scales including
neuronal membrane potentials, neuronal firing rates, field potentials and functional magnetic
resonance imaging (fMRI) signals [1–5]. A recent fMRI study showed that trial-by-trial vari-
ability of BOLD signals decreases following stimulus onset in a visual detection task and that
the magnitude of variability reduction was correlated with the magnitude of trial-averaged
response [3]. Moreover, the temporal variance of BOLD signals is significantly smaller during
the same task as compared with the resting condition [6]—an effect that has also been reported
in brain field potentials, neuronal membrane potentials, and neuronal spiking activity [7–9].
This suggests that the multidimensional space outlined by cortical activity is reduced following
the stimulus onset [10].

Yet, a detailed mechanistic explanation of these effects is still lacking. In the present work we
aimed to model the empirical observations of the fMRI study of [3], by studying the effect of
external inputs on the first- and second- order statistics of a large-scale model of the brain [11].
This model is composed ofN local E-I nodes, with one excitatory and one inhibitory neural sub-
populations, representing N brain regions that are interconnected through an empirical large-
scale connectivity matrix obtained using diffusion imaging data of healthy human subjects [12].
The dynamics of each of the E-I nodes follows the mean field equations derived by [13] and the
excitatory firing rate is clamped around 3 Hz by adjusting the connection weight from the I pop-
ulation to the E population, a procedure known as Feedback Inhibition Control (FIC) [11]. This
large-scale model has been shown to provide an efficient description of resting-state fMRI func-
tional connectivity together with realistic stimulus-evoked activity [11]. Here we assumed that
different tasks can be modeled by sets of inputs that co-activate different brain regions. Further-
more, we focused on synaptic activity, since it has been shown that BOLD signals relate to local
field potentials (LFPs) more closely than to neuronal firing rates [14–17].
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Using this model we observed that, as a consequence of single node and network dynamics,
the application of an external input impacts the network statistics, so that the entropy of the
stimulus-evoked activity is lower than that during spontaneous activity. We confirmed this
model prediction using empirical fMRI data and further discussed its functional implications.

Results
In this work, we examined how external stimulation impacts the statistics of both single E-I
nodes and a large-scale model composed of interconnected E-I nodes. A priori, the nonlinear
and stochastic nature of the dynamical equations hinders analytical progress, and the calcula-
tion of the network’s statistics relies on numerical simulations of the stochastic differential
equations (SDEs), which are time consuming and subject to sampling issues. But, in the case of
weak noise, one can linearize the stochastic fluctuations and derive deterministic differential
equations for the network’s statistics. This so-called linear noise approximation is described in
the Methods section. In the following, unless otherwise specified, we used this method to
approximate the network’s covariances, autocovariances, and power spectral densities both in
the spontaneous condition and when an external input is applied to the network.

Response of an isolated node
We first evaluated the variability of the synaptic activity of single E-I nodes (Fig 1A). We calcu-
lated two types of variability: i) the variance across stochastic realizations of synaptic activity
(trial-by-trial variance), noted σ2, and ii) the autocovariance (temporal variance) of synaptic
activity, defined as the covariance of the synaptic activity with itself at pairs of time points and
noted Fu(t+τ,t). Explicitly these statistics are given by:

s2 ¼ Var½u� ¼ uðtÞ � huðtÞ½ i�2� �
; ð1Þ

Fuðt þ t; tÞ ¼ uðt þ tÞ � uðt þ tÞh i½ �: uðtÞ � uðtÞh i½ �h i; ð2Þ
where u is the synaptic activity and the angle brackets<.> denote the average over stochastic
model realizations (i.e. the average over simulated trials). The autocovariance measures the
strength of the influence of the past dynamics of the system on its future dynamics [its normal-
ized version, Fu(t+τ,t)/Fu(t,t), which is insensitive to the absolute amount of fluctuation, is the
autocorrelation function (ACF)]. The equations governing these statistics can be analytically
calculated by assuming that the noise is sufficiently weak to allow for a linearized treatment of
the fluctuations or linear noise approximation (see Methods).

We examined how the application of an external stimulus Iext to the E population (Fig 1A)
changes the variability of synaptic activity. The stationary trial-by-trial variance of the synaptic
activity under external input was compared to its stationary spontaneous level (Iext = 0), and
the relative change was quantified by:

Ds2ðIextÞ ¼ 100� s2ðIextÞ
s2ð0Þ � 1

� �
: ð3Þ

The relative change of the mean synaptic activity (Δm) was also computed:

DmðIextÞ ¼ 100� mðIextÞ
mð0Þ � 1

� �
: ð4Þ

Fig 1B shows that an external input monotonically reduces the trial-by-trial variance of the
synaptic activity of both E and I populations, and increases the mean synaptic activity for both
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populations. In S1 Text we explicitly solved the equations for the variance and showed that the
decrease of synaptic activity’s variance in response to an external input is determined by non-
linearities and connectivity parameters (see also S1 Fig).

Moreover, the external input reduces the spread of the autocorrelation function (ACF) of
the synaptic activity of both E and I populations (Fig 1C and 1D). In conclusion, application of
an external input attenuates the trial-by-trial fluctuations and shortens the temporal memory
of the synaptic activity of an E-I local node.

Response of the large-scale network
We next evaluated the first- and second-order statistics of task-driven activity in a large-scale
network composed of local E-I nodes interconnected through empirically derived anatomical
connectivity (see Methods; see also [11]). The model has a single free parameter G that deter-
mines the strength of connectivity, called global coupling parameter (see Methods), which in
the following is fixed to G = 2.15, this value falls in the range of G values (between 1–4.45) for
which the model fits closely to the resting-state functional connectivity of fMRI data [11].
Given the previous results for an isolated node, we predict that external inputs to local nodes
propagate through the dynamical system, reducing the trial-by-trial variance of other nodes in
the network via direct or indirect pathways. Fig 2A shows the response of the large-scale net-
work when eight brain regions receive an external input (equal to Iext = 0.02 nA). To simulate
the results of [3], in which human subjects performed a visual detection task, the selected brain
regions receiving external inputs are related to visual processing. Two observations can be
made: First, as expected from the response of isolated nodes, trial-by-trial variance reduces
under simulated task condition for nodes directly receiving external inputs (Fig 2B). Second,

Fig 1. Response of a single local node. A: Top: Architecture of a local node composed of one excitatory (E) and one inhibitory (I) neural population. In the
stimulated condition an external input Iext is applied to the E population.Middle: The trial-by-trial variability describes the variance of synaptic activity at time t
across stochastic realizations, i.e. simulation trials. Here, three trials are shown (the distribution of synaptic activity at time t is shown in blue. In the stationary
regime, the trial-by-trial variance is independent of time. Bottom: The temporal variability describes the covariance of the synaptic activity with itself at pairs of
time points, t and t+τ, averaged across stochastic realizations, i.e. simulation trials. Here, three trials are shown. In the stationary regime, the temporal
variance is a function of τ only. B: Application of an external input increases the mean in both E and I populations (blue) while it reduces the synaptic trial-by-
trial variance of both populations with respect to the spontaneous state (black). The amount of change of the variance was given by Δσ2(Iext) = 100x[σ2(Iext)–
σ2(0)]/σ2(0). C–D: The application of the external input reduces the autocorrelation ACF(τ) of the excitatory population for the E population (C) and the I
population (D). The colors indicate the intensity of the applied external input Iext.

doi:10.1371/journal.pcbi.1004445.g001
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consistent with the above prediction, many nodes not directly receiving external inputs also
exhibit trial-by-trial variance reduction upon external stimulation to (other nodes in) the net-
work. Notably, the change of trial-by-trial variance with respect to the spontaneous activity
(Δσ2) is negative for all nodes (Fig 2B) and Δσ2 is negatively related to the change of synaptic
activity Δm (Fig 2C). This negative relation is consistent with the empirically observed negative

Fig 2. Response of the whole-brain network. A: Spontaneous (blue) and evoked (red) activity of the network for the excitatory populations (top) and the
inhibitory populations (bottom). The yellow dots indicate the eight brain regions receiving the external input, which are: r/lLOCC, r/lMT, r/lPCAL, r/lST. B:
Trial-by-trial variance change (Δσ2) with respect to the spontaneous condition for the excitatory populations (top) and the inhibitory populations (bottom).
Yellow dots indicate the eight brain regions receiving the external input.C: Relation between the amount of mean synaptic change (Δm) and the amount of
variance change (Δσ2) for the excitatory populations (black) and the inhibitory populations (gray). D: Temporal dynamics of Δm (top) and Δσ2 (bottom). Each
line traces the time evolution of Δm (or Δσ2) of each brain region. The shaded area indicates the application of the stimulus. E: The stimulus-induced relative
change of the power spectral density (ΔPSD) was computed for the excitatory populations (left) and the inhibitory populations (right). Blue: brain regions
receiving a direct external input; gray: brain regions receiving an indirect external input; black: average across brain regions. F: The relation between Δm and
Δσ2 is shown for 20 random stimulations constructed by randomly selecting eight nodes to which and external input is imposed (each color represents a
given stimulation).G: Probability density function (p.d.f) of the relative change of the covariances between excitatory nodes. For each pair of nodes (i,j) we
calculate the relative difference between the spontaneous covariance and the covariance evoked in the 20 random stimulations. H:Change of the
correlations between excitatory nodes. For each pair of nodes (i,j) we calculate the difference between the spontaneous correlation coefficient and the
correlation coefficient evoked in the 20 random stimulations.

doi:10.1371/journal.pcbi.1004445.g002
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correlation between the magnitude of variability reduction and the amplitude of evoked
response in fMRI signals [3]. This relation is expected for a large variety of connectivity matri-
ces, since it arises from the propagation of the stimulus to nodes separated by direct and indi-
rect links. However, using synthetic connectivities with different levels of clustering, we found
that the relation holds for connectivity matrices with low or intermediate clustering, as it is the
case of human connectomes, but it breaks for excessively clustered connectivity matrices for
which recurrent connections highly dominate (see S2 Fig).

The temporal dynamics of the model (Fig 2D) show that, during the application of the stim-
ulus, the mean synaptic activity increases, while its variance decreases, and, after a period of
relaxation of ~1–2 s, the system settles into a stable stimulus-evoked state. In the stationary
spontaneous and stimulus-induced states, the power spectral density (PSD) of fluctuations of
the system in the presence of stochastic perturbations can be calculated using the linear
approximation (see Methods, Eq 26). The change of variance in the frequency domain is given
by the relative change of the power spectral density (ΔPSD) in the task-driven synaptic activity
with respect to the spontaneous condition, defined as:

DPSD ¼ 100� PSDtask

PSDspont

� 1

" #
: ð5Þ

Interestingly, the effect of imposing an external input is different for different frequencies
and, as a result of network interactions, the PSDs of the brain regions are differently affected by
the external input (Fig 2E). For both excitatory and inhibitory units, most of the brain regions
directly receiving the external input showed reduced power in frequencies lower than 100 Hz,
with a maximal reduction at ~9Hz (9.65 Hz for excitatory units; 7.42 Hz for inhibitory units),
but those not directly receiving external input showed increased power in frequencies below
0.9 Hz and decreased power in frequencies between 0.9 and 100 Hz, with a maximal reduction
at ~9Hz (9.35 Hz for excitatory units; 8.42 Hz for inhibitory units). These results are consistent
with empirical electrophysiological findings of prominent desynchronization in alpha/beta fre-
quency ranges during task performance [18] and human ECoG observations of decreased
power in<1 Hz range only in task-relevant brain regions [7].

To show that the above results are not specific to the particular hypothetical “visual” task,
we produced a large set of hypothetical tasks, by imposing an external input (equal to 0.02 nA)
to the excitatory population of 8 randomly selected brain regions. The negative relation
between Δσ2 and Δmwas found for all tested stimuli (Fig 2F). Interestingly, while the external
stimulus highly impacts the covariances with respect to the spontaneous case (Fig 2G), with a
tendency to increase them, it only slightly changes the correlations between nodes (Fig 2H).
This indicates that functional connectivity amongst nodes, classically measured using correla-
tion matrices, is not dramatically changed by imposing an external stimulus.

We next allowed the global parameter G to vary and observed that the above results are
qualitatively the same for a large parameter space (within G = 1 and 3) (Fig 3), namely that Δσ2

and Δm are negatively related (Fig 3A), that the task-driven functional connectivity is very sim-
ilar to the spontaneous functional connectivity (Fig 3B), and that the input prominently
reduces the power of frequency fluctuations lower than 40 Hz (Fig 3C and 3D). Within this
parameter range the model captures both the observed behavior of the stimulus-driven activity
and the resting functional connectivity (as shown previously in [11]). In contrast, for G>3, the
model correctly predicts the resting functional connectivity, but the behavior of the stimulus-
driven activity is not consistent with the empirical observations.

We next calculated the dynamic change of the temporal variance (autocovariance) of the
synaptic activity when an external input is applied to the large-scale model. The external input
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Fig 3. Network response vs. global coupling. A: Correlation coefficient between the amount of mean
synaptic change (Δm) and the amount of variance change (Δσ2) as a function ofG, for the excitatory
populations (solid line) and for the inhibitory populations (dashed line). The inset shows the relation between
Δm and Δσ2 forG = 2.05 (blue) andG = 3.45 (black) for the excitatory populations. B: Similarity (correlation
coefficient) between the spontaneous and the task-evoked functional connectivity matrices as a function of
the global coupling (G). C: Relative change of the power spectral density (ΔPSD) in the stimulated condition
compared to the spontaneous condition, as a function ofG, for the excitatory populations. Top: ΔPSD
averaged across the excitatory populations of all brain areas.Middle: ΔPSD averaged across the excitatory
populations of the brain areas directly receiving the external input. Bottom: ΔPSD averaged across the
excitatory populations of the brain areas indirectly receiving the external input.D: same as C for the inhibitory
populations. In A–D the brain regions receiving the external input are: r/lLOCC, r/lMT, r/lPCAL, r/lST.

doi:10.1371/journal.pcbi.1004445.g003
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was applied at time t = 0 and lasted for 2 s. We used direct stochastic simulations of the net-
work to estimate the time evolution of the autocovariance (Fig 4A). During the application of
the external input, the temporal correlation length is reduced. To quantify this effect we calcu-
lated the characteristic time scale of the ACF, noted T95, given by the time lag at which its value
is equal to 0.05 (i.e. 95% percent of correlation decay). T95 was calculated using the linear
approximation (Eqs (21–24)) in stationary spontaneous and stimulus conditions (Fig 4B). We
found that temporal correlations lasted more than twice as long in the spontaneous state than
in the task state (for the excitatory synaptic activity: T95 = 290 ms vs. T95 = 140 ms; for the
inhibitory synaptic activity: T95 = 170 ms vs. T95 = 30 ms). Hence, the temporal memory of the
synaptic activity of the large-scale model is shortened after the stimulus onset.

Simulated BOLD dynamics
Up to now we have focused on the dynamics of the synaptic activity. Because BOLD fMRI is
widely used to study brain dynamics under both resting state and cognitive tasks, an important
question pertains to whether the previous results apply to the dynamics of BOLD signals. To
test this, we used a hemodynamic model to convert the total synaptic activity (the sum of excit-
atory and inhibitory synaptic activity) into BOLD activity. We used the Balloon-Windkessel
model for the Hemodynamic response that describes the transduction of neural activity to
BOLD changes, though non-linear dynamic equations of blood flow and deoxyhemoglobin
content [19]. The model parameters were chosen as in [3]. Using this nonlinear model we
found that an external stimulus input increases the trial-averaged BOLD activity, while reduc-
ing the averaged trial-by-trial variance of BOLD signals (Fig 5A), leading to a linear negative
relation between the relative change of trial-averaged BOLD activity and the relative change of
its trial-by-trial variance during the application of the external input (Fig 5B). However, the rel-
ative change of variance is positive for some of the brain regions (23 over 66). In the model,
this is due to the low-pass filtering of the hemodynamic model, since the Balloon-Windkessel
model acts as low-pass filter of the synaptic activity that passes frequencies under 1 Hz [20, 21].
As shown in Fig 2E, the stimulus-induced decrease of the synaptic variance is not negative for
all brain regions for frequencies under 1 Hz. As a consequence, those brain regions for which
the synaptic activity presents an elevation of the spectral power under 1Hz have a positive rela-
tive change of the variance of the BOLD activity (Fig 5C). The stimulus-induced reduction of
the autocovariance (Fig 5D) is moderate for the same reason: the memory of the BOLD signal
is highly dominated by the slow hemodynamic response.

Entropy reduction and relative entropy
We next investigated the functional implications of the change in network statistics induced by
external inputs. To this end, we calculated the differential entropy H of the synaptic activity.
The differential entropy is an extension of the Shannon entropy for a continuous random vari-
able and it is related to the volume occupied by the continuous random variable. H can be eas-
ily calculated for a multivariate normal distribution, an assumption that is met in our case for
the level of noise used in this study (S3 Fig). In such cases, H depends on the covariance matrix
which can be calculated using the linear noise approximation (see Methods). We evaluated the
differential entropy of the spontaneous activity and of the stimulus-driven activity for different
model tasks determined by external inputs to a given subset of brain regions (Fig 6A). We
found that external stimulation systematically reduces the entropy of the synaptic activity
(Fig 6B).

We next asked how much entropy (or uncertainty) in the synaptic activity is explained by
the intrinsic noise present at each node of the model. In other words, we asked how much
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uncertainty is produced by the dynamical system due to the intrinsic noise of each node propa-
gating into the network. To answer this question we calculated the Kullback-Leibler divergence
(KLD), also called relative entropy, between the distribution of intrinsic noise and the distribu-
tion of synaptic activity. Because the intrinsic noises are normally distributed with covariance
Qn and the distribution of synaptic activity is normally distributed (for weak noise) with
covariance Cv, the KLD can be calculated using Eq (32) (see Methods). We found that the rela-
tive entropy of the spontaneous synaptic activity is systematically higher than that of the stimu-
lus-driven synaptic activity, indicating that in the spontaneous state the dynamical system adds
more uncertainty to the intrinsic stochastic process than it does in the stimulated condition
(Fig 6C).

Thus far we have considered that the intrinsic noise of each brain region is independent
between nodes (i.e., Qn is diagonal). However, it is reasonable to think that during a task and
even at rest different brain regions share some noise, possibly due to shared sensory/proprio-
ceptive background inputs. We thus calculated the entropy and the relative entropy in the case
of non-diagonal noise covariance matrices. As for the diagonal case, we found that the stimu-
lus-driven synaptic activity has lower differential entropy and lower relative entropy than the
spontaneous activity (S4 Fig). Thus, external stimulation reduces the entropy of synaptic activ-
ity even in the presence of common noise.

Entropy reduction of fMRI signals
We tested the model prediction of higher entropy in the spontaneous activity than in the task-
driven activity using empirical data from [3]. The data consists of fMRI time-series from 33
ROIs, covering five cortical networks, as well as the hippocampus, thalamus and cerebellum,
acquired in 17 healthy subjects (see Methods). Each subject completed 8 fMRI runs, each last-
ing ~7 min, including 4 runs in resting-state conditions and 4 runs in a visual detection task

Fig 4. Time correlations. A: The autocovariance function was calculated for each time step time t and averaged across excitatory populations of all brain
regions. The stimulus was presented at t = 0 at last for 2 s (white lines). B: The averaged autocorrelation function (ACF) of excitatory synaptic activity at two
different times, t = 0.5 s (spontaneous, blue) and t = 0.8 s (stimulus period, red). Solid lines are results from simulations and the dotted blue and red lines
corresponded to the linear approximation in the stationary regime for the spontaneous and stimulus conditions, respectively. T95 represents the characteristic
time-scale: the time lag at which the ACF is equal to 0.05. In this simulation the brain regions receiving the external input are: r/lLOCC, r/lMT, r/lPCAL, r/lST.

doi:10.1371/journal.pcbi.1004445.g004
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Fig 5. Spontaneous and evoked dynamics of simulated BOLD signals. A: The BOLD activity was
simulated in response to a stimulus application for 800 trials. Top: evolution of the trial-averaged BOLD
activity relative change, with respect to the spontaneous period (before the stimulus onset), averaged across
brain regions. Bottom: BOLD trial-by-trial variance relative change, with respect to the spontaneous period,
averaged across brain regions. Shaded areas represent 95% confidence intervals. Vertical dotted lines
indicate the onset and offset of the stimulus.B: Relation between the amount of mean BOLD change and the
amount of variance change of BOLD signals, averaged over the period between t = 5s and t = 23s, for the
brain regions receiving directly (black) and indirectly (gray) the external input.C: Averaged change in power
spectral density of the summed E-I synaptic activity (ΔPSD) separately for those brain regions that show an
increase (red) or a decrease (blue) of variance in the simulated BOLD signal. The shaded area indicates the
response function of the BOLDmodel, given by the amplitude of the BOLD signal in response to cosine
inputs of different frequencies, i.e. zi = cos(ωt). D: Autocovariance of the BOLD signals of individual brain
regions in the spontaneous condition (light blue) and in the stimulated condition (light red). The
autocovariance averaged across brain regions is shown in blue for the spontaneous condition and in red for
the stimulated condition. In A–C the brain regions receiving the external input are: r/lLOCC, r/lMT, r/lPCAL, r/
lST.

doi:10.1371/journal.pcbi.1004445.g005
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condition. Each task run contains 20 stimulus presentations that the subject was to detect by
pressing a button as quickly as possible. The inter-stimulus interval ranged from 17.3–30.2 s.
First, for each subject and condition, we concatenated the time-series of the different runs and
estimated the entropy using two methods: i) by assuming normality and using Eq (30), and ii)
by using the Nilsson-Kleijn non-parametric estimator (see Methods). Using both methods, we
found that the differential entropy in the resting activity is significantly higher than that of the
task-driven activity (p<0.01, Wilcoxon signed-rank test) (Fig 7A). Second, we performed a
time-resolved analysis in which the differential entropy was calculated using sliding windows
of 5 frames (10.8 s) shifted in steps of 1 frame (2.16 s). Using Eq (30), we computed the time
course of the differential entropy, averaged across subjects, in the task condition, Htask(t), and
during rest, Hrest(t) (Fig 7B). The entropy values were referenced to the rest entropyH0

Fig 6. Entropy and relative entropy. A: The input noise (with covarianceQn) propagates through the
dynamical system and generates an output covarianceCv between the system’s state variables (i.e. synaptic
activity). The differential entropy of the input process (noise) and the output process (synaptic activity) is
determined by the corresponding covariance of inputs and outputs. The differential entropy of the inputs and
the one of the outputs of the large-scale model were compared in the spontaneous and task (stimulated)
conditions. B: The differential entropyH of the large-scale model was calculated in both the spontaneous
state and for many (500) random stimulations constructed by imposing an external input (equal to 0.02 nA) to
the excitatory population of 8 randomly selected brain regions. The spontaneous entropy is 1–3 bits larger
than the entropy in the task-evoked condition, for both excitatory (blue) and inhibitory (green) synaptic
activity.C: The relative entropy was measured as the amount of entropy of the synaptic activity that cannot
be accounted for by the noise inputs. It is given by the Kullback-Leibler divergence (KLD) between the input
stochastic process and the observed synaptic activity. The relative entropy is larger in the spontaneous state
than in the stimulated condition, for both excitatory (blue) and inhibitory (green) synaptic activity. In (B) and
(C) the noise covarianceQn is diagonal (i.e., intrinsic noise is uncorrelated).

doi:10.1371/journal.pcbi.1004445.g006
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averaged across subjects and across time windows, i.e. H0 ¼ 1
T

XT

t¼1
H

rest
ðtÞ, where T is the

total number of time steps in a run. When the task data was aligned to the stimulus onset, we
found that the differential entropy significantly decreases after the stimulus onset (p<0.01,
paired t-test) and, after ~8 s, it recovers its resting levelH0 (the significant difference at –17.3 s
is due to the previous stimulus).

Interestingly, the resting-state functional connectivity and the task functional connectivity
were very similar, with differences in correlation coefficients ranging between ±0.02 (Fig 7C), a
feature that is captured by the model (see Fig 2H).

Reduction of the cortical activity space
The above results show that the task-driven synaptic activity has lower trial-by-trial variance,
lower temporal variance, and lower entropy than the spontaneous synaptic activity. Altogether,
this indicates that the space occupied by the synaptic activity is reduced when external inputs
are impinging upon the network. To illustrate this effect, we represented the synaptic activity
at a given time point or in a given trial as a point in the state space. Fig 8A shows the simulated
synaptic activity of three brain regions in a three-dimensional space defined by the activity of
these brain regions when no external input is applied (spontaneous condition) and when an
external input is applied (task condition). The mean activity was removed for each brain
region; thus, here, the activity represents deviations from the mean. In the spontaneous condi-
tion, the network explores a volume of the state space that is larger than the volume explored

Fig 7. Entropy of fMRI signals. A: The differential entropyH(spont) of the resting fMRI BOLD activity was compared with the differential entropyH(task) of
the task-driven fMRI BOLD activity. The differential entropy was estimated with two different methods: assuming that fMRI signals are represented by a
multivariate Gaussian process (top) and using the Nilsson-Kleijn non-parametric estimator (bottom). The black triangle indicates the median of the entropy
difference H(spont)–H(task) (p: p-value for the Wilcoxon signed-rank test for zero median). B: Peristimulus time resolved differential entropy. The differential
entropy was calculated in windows of 5 frames, moved in steps of 1 frame, using Eq (30), in both rest [Hrest(t)] and task [Htask(t)] conditions and then averaged
across subjects. Entropy values were referenced to H0, i.e. the entropy averaged across subjects and time windows of 5 frames in rest condition. For task
activity the data was aligned to the stimulus onset (vertical line) and the entropy was averaged over stimulus presentations in the period between 17.3 s
before the stimulus onset and 17.3 s after the stimulus onset; for rest activity, the entropy was averaged over equivalent periods. The blue and red shaded
areas indicate the SEM of [Htask(t)–H0] and [Hrest(t)–H0], respectively. The stars indicate the windows during which Htask(t) is significantly different than
Hrest(t) (p<0.01, paired t-test).C: distribution of the difference between the correlation coefficients of the functional connectivity (FC) of resting activity,
averaged across subjects, and the FC of task activity, averaged across subjects.

doi:10.1371/journal.pcbi.1004445.g007
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in the task condition. In the temporal domain, the space occupied by the synaptic activity is
also reduced in the task condition compared to the spontaneous condition (Fig 8B). This is
shown by plotting the synaptic activity of a given brain region i in the three-dimensional space,
or Poincaré map, defined as the synaptic activity in three different time points t, t+τ, and t+2τ.
The volume of the space in the Poincaré map outlined by the spontaneous synaptic activity is
larger than that occupied by the task-driven synaptic activity.

Discussion
We have shown that external stimulation to a large-scale brain model attenuates the synaptic
fluctuations, increases the covariances, and reduces temporal memory in brain regions receiv-
ing the input directly or indirectly through the anatomical connectivity. Furthermore, we
showed that the spontaneous activity has more entropy and more relative entropy than the
task-driven activity. More entropy and more relative entropy means that the brain network
produces a larger number of possible activity configurations that are not explained by the
intrinsic noise. In other words, as shown in Fig 8 and in accordance with empirical observa-
tions, the multi-dimensional synaptic activity space is larger in the spontaneous state than
under external inputs.

Information capacity and transmission
Reducing the space occupied by the synaptic activity, as a consequence of reducing the trial-by-
trial and the temporal variability and increasing covariances, has relevant implications for

Fig 8. Reduction of the cortical activity space. A: The excitatory synaptic activity of three brain regions, in spontaneous (blue) and task (red) conditions, is
plotted in a three-dimensional space: each dot represents the vector Xi,j,k(t) = [x,y,z], where x = ui(t), y = uj(t), z = uk(t), and i, j, and k denotes three brain
regions. For this particular model task eight brain regions receive an external input; here, region i receives a direct external input while regions j and k receive
indirect inputs through large-scale connections. The ellipses represent the 95% confidence of the distribution projected onto two-dimensional planes.B: The
excitatory synaptic activity of a single brain region i, in spontaneous (blue) and task (red) conditions, is plotted in a three-dimensional Poincaré map: each dot
represents the vector X = [x,y,z], where x = ui(t), y = ui(t+τ), z = ui(t+2τ), and τ = 200ms. The ellipses represent the 95% confidence of the distribution
projected onto two-dimensional planes.

doi:10.1371/journal.pcbi.1004445.g008
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information processing. It has been shown that temporal variance and entropy of BOLD sig-
nals change with chronological age and that young adults who are also faster and more consis-
tent performers exhibited significantly higher brain variability across tasks [22–24]. In
addition, the reduction of trial-by-trial variability is highly predictive of better performance
[4]. These observations are likely complementary. Indeed, in the view of Information Theory,
the mutual information between the brain activity and a given stimulus can be decomposed as
the difference between the entropy of the full set of response patterns for all stimuli (total
entropy) and the entropy conditioned to one stimulus (evoked entropy). Thus, there are two
ways of increasing the information carried by the brain activity: by increasing the total entropy
or by decreasing the evoked entropy. There is growing evidence that the entropy at rest is an
upper bound of the total entropy, since stimulus-evoked patterns reoccur during spontaneous
activity [10, 25, 26]. In other words, more variability at rest is associated with a larger repertoire
of potential brain states and greater information capacity [27] while the ability to reliably
settle in a stimulus-evoked brain state allows better transmission of the information about the
stimulus.

Information Theory provides quantification of the amount of potential information that is
available given the distribution of brain activity. How the brain decodes this available informa-
tion is a topic of active research. Classification of multivariate fMRI patterns has been used to
decode different stimuli or behavioral conditions from the fMRI signals [28–30]. In this con-
text, the reduction of trial-by-trial variability under task would improve the discriminability of
the fMRI multivariate patterns, which in turn improves the decoding performance. Moreover,
if multivariate patterns have to be estimated using short time windows, as is likely during
dynamical task processing, reducing the temporal correlations of the fluctuations would
improve the estimation of the patterns (since the reduction of the autocorrelation leads to an
increase of the effective number of independent samples within the time window). It is possible
that the brain uses similar coding schemes to efficiently represent the incoming sensory infor-
mation and evolving mental states, although exactly how such decoding schemes are imple-
mented by neural systems remains an open question.

The link between synaptic activity and BOLD signals
In the present study we focused on the dynamics of the synaptic activity to model the empirical
BOLD fMRI signals. Concentrating on the synaptic activity is justified since it has been shown
that BOLD signals relate more closely to Local Field Potentials (LPF) rather than neuronal fir-
ing rates [14–17]). As in previous studies of large-scale models [11, 21, 31], we converted the
synaptic activity into simulated BOLD signals via a non-linear hemodynamic model, known as
the Balloon-Windkessel model [19]. We found prominent stimulus-induced decrease of BOLD
variance and a negative correlation between the relative change of trial-averaged BOLD
responses and the relative change of trial-by-trial BOLD variance, as reported empirically by
[3]. This supports a previous conclusion [3] that the observed BOLD variability reduction is
unlikely to be an effect of the nonlinearities in the hemodynamic response but rather is likely
due to the underlying synaptic activity.

Nonetheless, for some brain regions the simulated BOLD activity has slightly more vari-
ance in the stimulus-driven activity than in the spontaneous activity (Fig 5B). Using a voxel-
wise analysis across the whole brain on empirical fMRI data, it was found that whereas some
voxels showed increased variance after stimulus onset, none of them were statistically signifi-
cant after correction for multiple comparisons (Figure 4 in [3]). Thus, whether the observa-
tion of task-induced increase in trial-to-trial variance in selected regions in our model has
physiological importance remains to be seen. As mentioned above, the increase of variance in
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the present model is due to the low-pass filtering of the hemodynamic model that suppresses
the fluctuations frequencies above 1 Hz. Indeed, consistent with previous empirical observa-
tions using human ECoG recordings [7], the present model shows a prominent task-induced
decrease of synaptic variance for frequencies>1Hz, but, for frequencies<1Hz, this is mostly
evident in directly activated brain regions only. This suggests that the present dynamic mean
field model might be too simple to reconcile these two features and should be extended to
consistently reproduce the change of spectral power in both synaptic and BOLD activities.
Another alternative is that the hemodynamic model needs to be refined to completely describe
the neurovascular coupling between the BOLD signal and the synaptic activity at different fre-
quencies. Indeed, experimental evidence shows that BOLD fluctuations correlate with broad-
band LFP signals and that the alpha (8–12 Hz), beta (18–30 Hz), and gamma (40–100 Hz)
LFP bands were informative about the spontaneous BOLD signals from an individual brain
area [32].

Mechanism of variability reduction in the stimulus-evoked activity
The mechanism underlying stimulus-induced decrease of neural variability has been recently
studied in theoretical works. Among the proposed mechanisms, spontaneous multi-stability
has received much attention [5, 33, 34]. Under this scenario, the spontaneous activity of local
neural networks with an underlying clustered connectivity is highly variable due to transitions
through multiple spontaneous states. These transitions render the spontaneous activity more
heterogeneous, but are suppressed when a stimulus stabilizes the network in a single evoked
state and, as a result, the variability decreases in the stimulus-driven activity. This scenario
naturally predicts an important feature of spontaneous activity, namely that the different
spontaneous states are similar to the stimulus-evoked states [35, 36], a phenomenon reported
in studies of neuronal membrane potentials and spiking activity at the microcircuit level [10,
25] and in resting-state fMRI studies at large-scale network level [26, 37–40]. By contrast, in
the present study, the reduction of variability is due to single node synaptic dynamics (Fig 1)
without the need of multi-stability originating from clustered connections. We showed that
variance decrease results from nonlinearities and local E-I connectivity (see S1 Text). When
the local nodes interact through long-range connections a pattern of stimulus-induced vari-
ance reduction is observed as a result of direct and indirect inputs—a phenomenon that is
expected for a large variety of connectivities, as soon as large-scale recurrent connections do
not strongly dominate (S2 Fig). The model for local nodes presented herein is a mean-field
model that describes the mesoscopic dynamics of synaptic activity. This model can be
extended by introducing multi-stability in the local dynamics, a direction that requires further
investigation.

Rest vs. task functional connectivity
In the present data and model the functional connectivity is only slightly changed between rest
and task. Several studies have reported high similarity between resting and task-related func-
tional connectivity [37–40]; however, other studies have demonstrated reorganization of func-
tional networks during task performance [41–43]. Brain dynamics might be engaged into task
activity through diverse mechanisms. Here we modeled task-driven activity by imposing sets of
inputs that co-activate different brain regions. There are other possible models for task effects
on the brain, such as neuromodulation-mediated changes of network parameters that modify
the neural excitability, the synaptic efficacy, or the gating of inputs. How these mechanisms
alter the statistics of task-driven activity in a large-scale model have only recently been exam-
ined and awaits further investigation [44–46].
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Time-varying inputs
Finally, we here focused on the effect of imposing a stationary input to the large-scale brain
model. A natural extension of the present work would be to study the effect of time-varying
(sinusoidal) inputs and compute the frequency-dependent response function of different net-
work statistics. Considering an input of small amplitude would allow to linearize the response
and to study the eventual resonances. Moreover, these resonances may be partly determined
by transmission delays, given by the experimental distance matrix between the different brain
regions, a scenario that is not consider in the present work.

Conclusion
In conclusion, we have shown that the stimulus-driven shrinkage of cortical activity space can
be understood as a property of mesoscopic dynamics embedded in large-scale brain networks,
a property that has important implications for information processing.

Methods

Ethics statement
This research was conducted in agreement with the Code of Ethics of the World Medical Asso-
ciation (Declaration of Helsinki) and informed consent was obtained from all subjects before
performing the study, in accordance with institutional guidelines. The study design was
approved by the Human Studies Committee of Washington University in St. Louis and the
local Ethics Committee of Lausanne University.

Empirical fMRI data collection and analysis
Blood-oxygen-level dependent (BOLD) fMRI data (4x4x4 mm3 voxels, TE 25 ms, TR 2.16 s)
were acquired in 17 normal right-handed young adults (9 females, age 18–27 years) using a 3T
Siemens Allegra MR scanner. All subjects gave informed consent in accordance with guidelines
set by the Human Studies Committee of Washington University in St. Louis. Each subject com-
pleted 8 fMRI runs, each 194 frames (~7 min) in duration. They consisted of two alternating
run types. The first run type was a resting-state study in which a white crosshair was presented
in the center of a black screen. Subjects were instructed to look at the crosshair, remain still,
and to not fall asleep. The second run type was a task study in which the identical crosshair was
presented, but now it occasionally changed from white to dark gray for a period of 250 ms, at
times unpredictable to the subjects, with an inter-stimulus interval of 17.3–30.2 sec. The sub-
jects were instructed to press a button with their right index finger as quickly as possible when
they saw the crosshair dim. This data set has been previously used in [3, 6, 47]. Thirty-three
regions of interest (ROIs) covering five cortical networks—the attention, default-mode, motor,
saliency and visual networks, as well as the hippocampus, thalamus and cerebellum were
defined based on previous task-related functional neuroimaging studies. The preprocessing of
the fMRI data and definition of ROIs are described in detail in [3].

Large-scale cortical dynamic mean field model
We used the model of [11] to describe the global dynamics of the whole cortex. This model
binds the dynamics of N local nodes, composed of excitatory—inhibitory subnetworks (E—I
networks), through the underlying anatomical structure which is estimated using diffusion-
imaging data from healthy human subjects. The stochastic differential equations of the model
describe the time evolution of the mean synaptic activity of each local node (i.e., brain region)
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where SE;Ii denotes the average excitatory or inhibitory synaptic gating variable (i.e., fraction of

open channels) at the local area i (i 2 [1,. . .,N]). In Eqs 10 and 11 ZðEÞi ðtÞ and ZðIÞi ðtÞ are uncor-
related Gaussian noises and the noise amplitude at each node is β = 0.01. rE;Ii denotes the popu-
lation firing rate of the excitatory (E) or inhibitory (I) population in the brain area i. The
population firing rates are sigmoid functions (FI and FE) of the input synaptic currents to the

excitatory or inhibitory population i is given by uE;I
i . Synaptic currents are the sum of i) local

currents within the local E—I networks, ii) excitatory currents from the other local nodes, and
iii) external inputs Iext. The local currents in node i are the sum of constants inputs to excit-
atory and inhibitory populations, noted I0,E and I0,I, respectively, local excitatory-to-excitatory

currents wEES
ðEÞ
i , local inhibitory-to-excitatory currents wEI;iS

ðIÞ
i , local excitatory-to-inhibitory

currents wIES
ðEÞ
i , and local inhibitory-to-inhibitory currents wIIS

ðIÞ
i . The weights of these local

connections are given by: wEE = 0.21; wIE = 0.15; wII = 1; and the feedback inhibition weight,
wEI,i, is adjusted for each node i so that the firing rate of the local excitatory neural population
is clamped around 3Hz, whenever nodes are connected or not—this regulation is known as
Feedback Inhibition Control (FIC) and the algorithm to achieve it is described in [11]. It has
been shown that the FIC constrain leads to a better prediction of the resting functional connec-
tivity and a more realistic network evoked activity [11]. Local E—I networks interact through
excitatory connections given by the N-by-N anatomical connectivity matrix, noted C. The con-
nectivity matrix is scaled by a single global parameter, G, that changes the network from weakly
to strongly connected and determines the dynamical state of the system. As shown in [11] the
model has one single stable fixed point of low firing activity in all cortical areas, for all values of
G within the region where the FIC regulation can be achieved. For larger values of G, long-
range interactions are too strong to be compensated by FIC and the activity diverges. Finally,
Iext represents external stimulation for simulating task evoked activity: it is zero for all neural
populations under resting state condition, and Iext>0 for those populations excited in the task
condition.

The values of all parameters are taken from [11] and are presented in S1 Table.
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Structural connectivity matrix
Neuroanatomical structure was obtained using Diffusion Spectrum Imaging (DSI) data and
tractography from five healthy right-handed male human subjects [12]. The grey matter was
subdivided into 998 regions of interest (ROIs) which are grouped into 33 cortical regions per
hemisphere (66 areas in total) according to anatomical landmarks (S2 Table). White matter
tractography was used to estimate the fiber tract density connecting each pair of ROIs, aver-
aged across subjects. Anatomical connectivity among the 66 cortical regions was calculated by
summing all incoming fiber strengths to the corresponding ROIs of the target region, and
dividing it by its region-dependent number of ROIs, resulting in a non-symmetric connectivity
matrix. This normalization by the number of ROIs—which have approximately the same sur-
face on the cortex, i.e. the same number of neurons—is required because neuronal activity is
sensitive to the number of incoming fibers per neuron in the target region. As the dynamical
model of one region already takes into account the effect of its internal connectivity (see
below), the connection of a region to itself was set to 0 in the connectivity matrix for the
simulations.

Linear noise approximation
In the following we derive approximated equations for the statistics of the gating variables and
the synaptic activity. To estimate the network’s statistics, we assume that the noise is suffi-
ciently weak so that the state variables fluctuate around their mean value and, by linearizing
the equations, we concentrate on linear fluctuations. In this way, we express the system of sto-
chastic differential Eqs (6–11) in terms of the first- and second-order statistics of the distribu-

tion of synaptic gating variables: mðmÞ
i , the expected mean gating variable of a given local neural

population of typem (wherem = E or I) of the cortical area i, and PðmnÞ
ij , the covariance between

gating variables of neural populations of typem and n of local cortical areas i and j, respec-
tively. The statistics are defined as:

mðmÞ
i ðtÞ ¼ SðmÞ

i ðtÞ
D E

; ð12Þ

PðmnÞ
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i ðtÞ

h i
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j ðtÞ
h iD E

; ð13Þ

where the angular brackets<.> denote the average over realizations or “trials”. Note that, for
the model, a “trial”means a realization of the system of differential Eqs (6–11). In vector form,
the system of equations writes:

d
dt
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i = 1,..,N.

In the following we use a linear approximation of the fluctuations. As shown in [11], Taylor

expanding~S around~m ¼ ~S
� �

, i.e. SðmÞ
i ¼ mðmÞ

i þ dSðmÞ
i , up to the first order, we obtain the differ-

ential equations for the means of the gating variables and the covariance of the fluctuations
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around the mean. For the mean values:
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where ui
(m) is the mean input current to the neural populationm = E,I of cortical area i, defined

as:

~u ¼ ~uðEÞ

~uðIÞ

 !
¼ W~S þ~I 0 þ~I ext; ð17Þ

whereW is a block matrix defined as:

W ¼ wEEIN þ G:C �Dð~wEIÞ
wIEIN �wIIIN

" #
;

where C is the NxN anatomical matrix, G the global coupling parameter, IN is the NxN identity
matrix,Dð~wEIÞ is a NxN diagonal matrix containing the weights of the feedback inhibition wEI,

i as diagonal elements, and~I 0 and~I ext are the vectors containing the constant and external
inputs.

Let P being the covariance matrix between gating variables~S. P is a block matrix defined as:

P ¼ PðEEÞ PðEIÞ

PðIEÞ PðIIÞ

" #
:

The differential equation of the covariance matrix is [11]:

dP
dt

¼ APþPATþQn; ð18Þ

where the superscript T is the transpose, Qn is the covariance matrix of the noise, given by

Qn ¼ ~ZðtÞ~ZðtÞT� �
, and A is the Jacobian matrix given by first-order partial derivative of the

nonlinear function f with respect to each variable S, evaluated at~m. A is a block matrix defined
as:

A ¼ AðEEÞ AðEIÞ

AðIEÞ AðIIÞ

" #
;

where
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@SðnÞj
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:

Note that the Jacobian matrix depends on the point~m at which it is evaluated.
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The synaptic input variables~u are a linear combination of the gating variables~S and, thus,
covariance matrix between synaptic input variables~u is given by:

Cv ¼ WPWT: ð19Þ

Knowledge of the Jacobian matrix and the stationary covariance gives the stationary autoco-

variance of the gating variables~S, defined as the covariance of the process with itself at pairs of
time points and given as:

FSðt þ t; tÞ ¼ ~Sðt þ tÞ �~mðt þ tÞ
 �
~SðtÞ �~mðtÞ
 �TD E

: ð20Þ

In the stationary regime FS(t+τ,t) depends only on τ and is given by:

FSðtÞ ¼ etAFSð0Þ ¼ etAP; ð21Þ

where the exponential matrix is defined as:

etA ¼ Iþ tAþ 1

2!
ðtAÞ2 þ 1

3!
ðtAÞ3 þ . . . ð22Þ

The stationary autocovariance of the synaptic input variables~u is, thus, given by:

FuðtÞ ¼ WFSðtÞWT: ð23Þ

The autocorrelation function (ACF) of the i-th synaptic input variable is given by:

ACFiðtÞ ¼ Fu;iðtÞ=Fu;ið0Þ: ð24Þ

Finally, the power spectral density (PSD) of fluctuations around the fixed points is also

determined by the Jacobian matrix. The cross-spectrum of the gating variables~S is given as
[11]:

PSðoÞ ¼ d~SðoÞd~SðoÞy� � ¼ Aþ ioð Þ�1
Qn AT � io
� ��1

; ð25Þ

where d~SðoÞ is the Fourier transform of d~SðtÞ and the superscript † is the conjugate transpose.
The cross-spectrum of the synaptic input variables~u is, thus, given by:

PuðoÞ ¼ d~uðoÞd~uðoÞy� � ¼ WPSðoÞWy: ð26Þ

The PSD of synaptic activity as a function of the frequency ω is given by the diagonal of
∏u(ω).

Note that the different network’s statistics (variances, covariances, and PSD) are determined
by the Jacobian matrix A that depends on the state of the nonlinear system (the elements of the
A are derivatives evaluated at~m). Because the application of an external input changes the state
of the system, therefore changing the derivatives, the network’s statistics are also changed. In
other words, the nonlinear nature of the system renders the network’s statistics state-
dependent.

In summary, to get the stationary network’s statistics we simulated the deterministic Eqs
(15–18) and, once the stationary values of the mean synaptic gating variables (~m), the covari-
ance matrix (P), and the Jacobian matrix (A) were reached all other statistics were computed
using Eqs 19–26. All differential equations used in the present study were solved using the
Euler’s method with a time step equal to dt = 0.1 ms. The total number of simulation steps was
105, this simulation length ensures that the system reaches the stationary regime.
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Differential entropy
Once we have obtained the linear prediction of the covariance we can estimate the extent of all
possible configurations of the network given by the differential entropyH, which expresses the
entropy of a continuous variable with n-dimensional probability density function (p.d.f.) f, and
writes:

Hðf Þ ¼ �
ð
D

f ð~xÞlnf ð~xÞd~x; ð27Þ

where D 2 R
n is the support set of f, i.e., D = {x|f(x)> 0}. The entropy is related to the spread

of the p.d.f., i.e., it relates to the volume occupied by a continuous random variable. The volume
of the support set D is defined as:

VolðDÞ ¼
ð
D

dx1dx2 . . . dxn: ð28Þ

The volume of the smallest set that contains most of the p.d.f is approximately 2nH(f) [48].
Thus, low entropy implies that the random variable is confined to a small effective n-dimen-
sional volume and high entropy indicates that the random variable is widely dispersed.

For a n-dimensional normal distribution (μ, ∑) with covariance matrix ∑, the differential
entropy in bits is given by the following form [48]:

H ¼ 1

2
ln 2peð Þndet Sð Þ½ � lnð2Þ ¼ n

2lnð2Þ ð1þ lnð2pÞÞ þ 1

2lnð2Þ detðSÞ; ð29Þ
�

where det(S) is the determinant of the covariance matrix. We also calculated the differential
entropy for the fMRI time-series used in [3]. For these empirical data we used two different cal-
culations of the differential entropy. The first measure assumes that the data follows a n-
dimensional multivariate normal distribution (n = 33) and is given by, first, estimating the
covariance matrix of the fMRI signals for each subject (averaged across runs of the same condi-

tion, rest or task), noted Ŝ, second, calculating the determinant of Ŝ as the product of the k
non-zero singular values (λ) to elude singularity, and, finally, calculating the entropy as fol-
lows:

H ¼ k
2lnð2Þ ð1þ lnð2pÞÞ þ 1

2lnð2Þ
Xk

j¼1

lnðljÞ: ð30Þ

For 16/17 subjects we found that k = 29 for both rest and task. For only one subject we
found that k = n = 33 for both rest and task. As a second measure we used the Nilsson-Kleijn
non-parametric estimator that does not assume normality and calculates the differential
entropy based on nearest neighbors of a sample set [49]. Both ways of calculating the differen-
tial entropy H gave very similar results: the values of H obtained using the two methods were
highly correlated (rc = 0.91 for rest data and rc = 0.90 for task data).

Relative entropy
Following [50], we defined the relative entropy as the Kullback-Leibler divergence between the
intrinsic noise and the synaptic activity of the network. In its general form the Kullback-Leibler
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divergence between two distributions f and g is defined as:

KLD ¼
ð
f ln

f
g
: ð31Þ

The intrinsic noise and the synaptic activity are normally distributed (see S3 Fig) and, in
this case, it can be shown that the relative entropy between the intrinsic noise and the synaptic
activity writes [50]:

KLDð~u;~ZÞ ¼ 1

2
traceðQ�1

n CvÞ � ln
detðCvÞ
detðQnÞ

� 2N

� �
=lnð2Þ: ð32Þ

The relative entropy can be seen as the amount of uncertainty that is produced by the
dynamical system.

Supporting Information
S1 Text. Appendix: Isolated node case.
(PDF)

S1 Table. Parameters of dynamic mean-field model.
(DOC)

S2 Table. Names and abbreviations of the brain regions considered in the human connec-
tome from Hagmann et al. (2008) (in alphabetical order).
(DOC)

S1 Fig. Effect of an external input on σE
2 for an isolated E-I node. A: transfer functions of

the E and I populations, FE(uE) and FI(uI), and their derivatives, F
0
EðuEÞ and F0

IðuIÞ. The cir-
cles indicate the corresponding values in the spontaneous condition (Iext = 0). B: s2

E as a func-
tion of Iext, using the solution given by the linear noise approximation (equation A19, see S1
Text) and using the approximated expression in equation A20 (see S1 Text). Parameters: wEE =
wIE = 0.15. C: The spontaneous excitatory firing rate (rE0) is shown in color-code in the param-
eter space {wEE, wIE}. For all tested couples of parameters {wEE, wIE}, except for the parameter
region delimited by the white lines, s2

E is a decreasing function of Iext. The insets show the
dependence of s2

E on Iext for two points of the parameter space (green: wEE = 0.2, wIE = 0.15;
orange: wEE = 0.6, wIE = 1.15).
(TIF)

S2 Fig. Response of modular networks. The response of the large-scale model was examined
in the case of artificial N-by-N connectivity matrices of different modularity (N = 66). We con-
structed three different random binary modular graphsM, defined by two parameters: the
overall attachment probability or “link density”, q, and the proportion of links within five mod-
ules, noted p. The link density was fixed and equal to the one of the DTI-based matrix used in
our work (q = 0.14), and different within-modules link probabilities (p) were used. The matri-
ces can be classified as (A) nearly random (p = 0.1), (B) moderately clustered (p = 0.5), and (C)
highly clustered (p = 0.9) (top panels). These modular matrices were scaled as G×m×M, where
m is the mean value of the DTI-based matrix (m = 0.025) and G = 3.4, and integrated to the
dynamic mean-field model. For each connectivity matrixM, the local feedback inhibition
weights were regulated through FIC [11].Middle: the spontaneous (rest) excitatory activity is
shown in black; stimulus-induced (task) excitatory activity is shown in green. The yellow dots
indicate the eight nodes receiving the external input. Bottom: Relation between the amount of
mean synaptic change (Δm) and the amount of variance change (Δσ2) for the excitatory
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populations. We found a graded negative relation between Δm and Δσ2 for nearly random and
moderately clustered connectivities, but this relation does not hold for highly clustered connec-
tivities.
(TIF)

S3 Fig. Distribution of synaptic activity. The joint density distribution of the simulated excit-
atory synaptic activity from two example model brain regions x and y is shown in color code
during spontaneous (left) and evoked (right) conditions. The data was obtained by simulating
the large-scale model using the system of stochastic differential Eqs (6–11), with noise intensity
equal to β = 0.01. The individual distributions of x and y (empty bars) are excellently fitted by
Gaussian distributions (solid gray lines).
(TIF)

S4 Fig. Entropy and relative entropy under correlated noise. A: As in Fig 6, we calculated the
differential entropy (H) and the relative entropy (KLD), but using different random non-diago-
nal noise covariance matrices and fixing the stimulation pattern (the brain regions receiving
the external input are: r/lLOCC, r/lMT, r/lPCAL, r/lST). In this analysis, we constructed non-
diagonal random noise covariance matrices by, first, generating 500 realizations of a multivari-
ate 2N-dimensional Gaussian process with diagonal covariance equal toQn = (βdt)2 I2N, thus
obtaining 2N time series of 500 steps, and, second, the sample covariance of these time series
was calculated and used as a random non-diagonal (due to sample errors) noise covariance.
We found that the evoked synaptic activity has lower differential entropy (B) and lower relative
entropy (C) than the spontaneous activity, for both excitatory (blue) and inhibitory (green)
synaptic activity. Parameters: N = 66, β = 0.01, dt = 0.1 ms.
(TIF)

S1 Dataset. BOLD fMRI data (TR 2.16 s) acquired in 17 subjects. Each subject completed 8
fMRI runs (4 rest runs and 4 task runs). Each run has 194 frames. The ASCII file Rest_fMRI
contains T rows corresponding to all frames for all runs and all subjects in the rest condition
(T = 194×4×17). It has N+1 columns: columns 1–N correspond to the BOLD activity for each
of the N ROIs and the last column indicates the subject number (N = 33). The ASCII file
Task_fMRI contains T rows corresponding to all frames for all runs and all subjects in the task
condition (T = 194×4×17). It has N+2 columns: columns 1–N correspond to the BOLD activity
for each of the N ROIs, column N+1 indicates the subject number, and a value 1 in column N
+2 indicates the onset of the stimulus. For each run the first 4 volumes were removed. The
labels of the brain regions are contained in file 33ROIs_labels.txt.
(ZIP)

S2 Dataset. The ASCII file Struct_Conn contains the 66-by-66 structural connectivity
matrix, obtained using Diffusion Spectrum Imaging (DSI) data and tractography from five
healthy right-handed male human subjects [12]. The labels of the brain regions are contained
in file 66ROIs_labels.txt.
(ZIP)
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